Riudavets J, Iturralde-García RD, Castañé C, Bourne R, Wong-Corral FJ (2021) Effect of carbon dioxide sorption in packaged chickpeas on the susceptibility to modified atmospheres of *Rhyzopertha dominica* and *Callosobruchus chinensis*. Page 175. In: Jayas DS, Jian F (eds) Proceedings of the 11th International Conference on Controlled Atmosphere and Fumigation in Stored Products (CAF2020), CAF Permanent Committee Secretariat, Winnipeg, Canada.

Effect of carbon dioxide sorption in packaged chickpeas on the susceptibility to modified atmospheres of *Rhyzopertha dominica* and *Callosobruchus chinensis*

Jordi Riudavets^{1*}, Rey D. Iturralde-García¹, Cristina Castañé¹, Raquel Bourne², Francisco J. Wong-Corral²

ABSTRACT

Modified atmospheres (MAs) with 50 or 90% CO₂ were tested in containers filled with chickpeas at different filling ratios (24, 48 and 96%) to assess the amount of CO₂ sorbed by the pulse. The maximum sorption (1.28 gCO₂/kg of chickpea) was obtained with the lowest filling ratio tested (24%) and with an initial concentration of 90% CO₂. Time needed to reach equilibrium sorption varied between 27 and 141 h, depending on the initial CO₂ concentration and filling ratio. The negative pressure produced by sorption inside the containers incremented with the increase of the filling ratio and the initial CO₂ concentration.

Mortality of the internal feeders *Rhyzopertha dominica* (F.) and *Callosobruchus chinensis* (L.) was assessed in packages filled with two extreme filling ratios (4 and 96% of chickpeas) and with 50 or 90% CO₂. For both pest species, the exposure time to reach 50% mortality ranged from 7 h (larvae with 90% CO₂) to 2 d (pupae with 50% CO₂) at the lower filling ratio tested (4%). When increasing the filling ratio to 96% of chickpeas, mortality of *R. dominica* eggs and adults decreased significantly while did not vary for the internal developmental stages. A similar effect was observed (a decrease in mortality of external developmental stages) in *C. chinensis* at 96% filling ratio with 50% CO₂. However, mortality remained the same for the eggs and pupae at 90% CO₂.

The decline in mortality of external developmental stages of both weevils was probably due to the sorption of CO₂ by the chickpeas, which caused a loss of intergranular levels of CO₂. In conclusion, when chickpeas were packaged with high CO₂ MAs, a decrease in the mortality of the external stages of the pests could be expected due to sorption, whereas for internal stages effectiveness could be anticipated to be the same.

Keywords: Modified atmospheres, Filling ratio, Sorption, Negative pressure, Weevils, Chickpeas, Insect pests, Control, Vacuum, Legumes

¹IRTA, Ctra. Cabrils km 2, E-08348, Cabrils, Barcelona, Spain.

²Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Rosales y Luis Encinas S/n, 83000, Hermosillo, Sonora, Mexico.

^{*}Corresponding author's email: jordi.riudavets@irta.cat